Condensed matter physics

Condensed matter physics

Marder, Michael P.

109,05 €(IVA inc.)

INDICE: Preface. References. I ATOMIC STRUCTURE. 1 The Idea of Crystals. 1.1 Introduction. 1.2 Two-Dimensional Lattices. 1.3 Symmetries. 2 Three-Dimensional Lattices. 2.1 Introduction. 2.2 Monatomic Lattices. 2.3 Compounds. 2.4 Classification of Lattices by Symmetry. 2.5 Symmetries of Lattices with Bases. 2.6 Some Macroscopic Implications of Microscopic Symmetries. 3 Scattering and Structures. 3.1 Introduction. 3.2 Theory of Scattering from Crystals. 3.3 Experimental Methods. 3.4 Further Features of Scattering Experiments. 3.5 Correlation Functions. 4 Surfaces and Interfaces. 4.1 Introduction. 4.2 Geometry of Interfaces. 4.3 Experimental Observation and Creation of Surfaces. 5 Beyond Crystals. 5.1 Introduction. 5.2 Diffusion and Random Variables. 5.3 Alloys. 5.4 Simulations. 5.5 Liquids. 5.6 Glasses. 5.7 Liquid Crystals. 5.8 Polymers. 5.9 Colloids and Diffusing-Wave Scattering. 5.10 Quasicrystals. 5.11 Fullerenes and nanotubes. II ELECTRONIC STRUCTURE. 6 The Free Fermi Gas and Single Electron Model. 6.1 Introduction. 6.2 Starting Hamiltonian. 6.3 Densities of States. 6.4 Statistical Mechanics of Noninteracting Electrons. 6.5 Sommerfeld Expansion. 7 Non-Interacting Electrons in a Periodic Potential. 7.1 Introduction. 7.2 Translational SymmetryBloch's Theorem. 7.3 Rotational SymmetryGroup Representations. 8 Nearly Free and Tightly Bound Electrons. 8.1 Introduction. 8.2 Nearly FreeElectrons. 8.3 Brillouin Zones. 8.4 Tightly Bound Electrons. 9 Electron-Electron Interactions. 9.1 Introduction. 9.2 Hartree and Hartree-Fock Equations. 9.3 Density Functional Theory. 9.4 Quantum Monte Carlo. 9.5 Kohn-Sham Equations.10 Realistic Calculations in Solids. 10.1 Introduction. 10.2 Numerical Methods. 10.3 Definition of Metals, Insulators, and Semiconductors. 10.4 Brief Survey of the Periodic Table. III MECHANICAL PROPERTIES. 11 Cohesion of Solids. 11.1 Introduction. 11.2 Noble Gases. 11.3 Ionic Crystals. 11.4 Metals. 11.5 Band Structure Energy. 11.6 Hydrogen-Bonded Solids. 11.7 Cohesive Energy from Band Calculations. 11.8 Classical Potentials. 12 Elasticity. 12.1 Introduction. 12.2 Nonlinear Elasticity. 12.3 Linear Elasticity. 12.4 Other Constitutive Laws. 13 Phonons. 13.1 Introduction. 13.2 Vibrations of a Classical Lattice. 13.3 Vibrations of a Quantum-Mechanical Lattice. 13.4 Inelastic Scattering from Phonons. 13.5 The Mössbauer Effect. 14 Dislocations and Cracks. 14.1 Introduction. 14.2 Dislocations. 14.3 Two-Dimensional Dislocations and Hexatic Phases. 14.4 Cracks. 15 Fluid Mechanics. 15.1 Introduction. 15.2 Newtonian Fluids. 15.3 Polymeric Solutions. 15.4 Plasticity. 15.5 Superfluida 4He. IV ELECTRON TRANSPORT. 16 Dynamics of Bloch Electrons. 16.1 Introduction. 16.2 Semiclassical Electron Dynamics. 16.3 Noninteracting Electrons in an Electric Field. 16.4 Semiclass

  • ISBN: 978-0-470-61798-4
  • Editorial: John Wiley & Sons
  • Encuadernacion: Cartoné
  • Páginas: 952
  • Fecha Publicación: 03/12/2010
  • Nº Volúmenes: 1
  • Idioma: Inglés