Organic electronics II

Organic electronics II

Klauk, Hagen

150,20 €(IVA inc.)

Bringing together renowned experts from academia and industrial research labs, this book and ready reference offers a joint perspective on the latest developments in the field of organic thin-film transistors, thus providing the essential knowledge for readers from both sectors.This edition retains the proven concept and the clear division of the book into the three parts "Materials", "Manufacturing" and "Applications", while adding new content to keep the readerup to date on the most recent advancements in the chemistry, materials science, physics, manufacturing technology and integration of organic transistors. INDICE: Preface XIIIList of Contributors XVPart I Materials 11 Organic Semiconductor Materials for Transistors 3David Ian James, Jeremy Smith, Martin Heeney, Thomas D. Anthopoulos, Alberto Salleo, and Iain McCulloch1.1 General Considerations 31.2 Materials Properties of Organic Semiconductors 51.3 Small Molecule Semiconductors 81.3.1 Sexithiophene 81.3.2 Pentacene and Derivatives 81.4 Polymer Semiconductors 91.4.1 Thiophene-Based Polymers 91.4.1.1 Poly(3-Alkylthiophenes) 91.4.1.2 Thienothiophene Copolymers 121.4.1.3 pBTTT 141.5 Semiconductor Blends 171.6 Device Physics and Architecture 181.7 Summary 22References 232 Characterization of Order and Orientation in Semiconducting Polymers 27Dean M. DeLongchamp and R. Joseph Kline2.1 Introduction 272.2 X-Ray Diffraction 282.2.1 Thin-Film XRD 292.2.2 Grazing-Incidence X-Ray Diffraction (GIXD) 382.3 Near-Edge X-Ray Absorption Fine Structure (NEXAFS) Spectroscopy 472.3.1 Background and General Features of NEXAFS 472.3.1.1 NEXAFS Experimental Considerations 482.3.1.2 Chemistry Determination by NEXAFS 522.3.1.3 Orientation Analysis in Organic Semiconductors 542.3.2 Horizons for NEXAFS 58References 593 Charge Transport Theories in Organic Semiconductors 67Rodrigo Noriega and Alberto Salleo3.1 Introduction 673.2 Well-Ordered Systems: Organic Single Crystals 683.2.1 General Conditions for Band Transport 683.2.2 Experimental Evidence for BandTransport in Organic Crystals 693.2.3 Band or Bandlike? 723.3 Disordered Materials 733.3.1 Different Types of Disorder 733.3.2 Effect of Disorder on ChargeTransport 753.3.2.1 Dispersive and Nondispersive Transport 763.3.2.2 Transport Models 763.3.2.3 Computational Methods 883.3.2.4 Comparison with Experiments913.4 Conclusions 101Acknowledgments 101References 1014 Silylethyne-Substituted Acenes and Heteroacenes 105John E. Anthony and Adolphus G. Jones4.1 Introduction 1054.2 Silylethyne-Substituted Pentacenes 1064.3 Crystal Packing 1084.3.1 Properties of Silylethyne-Substituted Pentacenes 1094.3.2 Electronic Structure Studies 1104.3.3 Device Studies 1124.3.4 Blends of Silylethynyl Pentacenes and Polymers 1144.3.5 Silylethyne Pentacene-Based Polymers 1154.3.6 Organic Light Emitting Diodes and Photovoltaics Using Silylethynyl Pentacenes 1164.3.7 Silylethynyl Pentacene n-Type Semiconductors 1194.3.8 Other Silylethyne-Substituted Acenes in Organic Electronics 1204.4 Heteroacenes 1214.4.1 Silylethyne-Substituted Heteroacenes 1224.4.2 Crystal Packing 1234.4.3 Device Studies 1234.4.4 Silylethynyl Heteroacenes for n-Type Applications 1294.4.5 Blends of Silylethyne-Substituted Heteroacenes and Polymers 1304.5 Silylethynyl Heteroacene-Based Polymers 1314.6 Silylethynyl Heteroacene-Based Photovoltaics 1324.7 Conclusion 132References 1325 Conjugated Semiconductors for Organic n-Channel Transistors and Complementary Circuits 137Antonio Facchetti5.1 Introduction 1375.2 Basics of Field-Effect Transistors and Complementary Circuits 1385.2.1 Field-Effect Transistors 1385.2.2 Complementary Circuits 1415.3 Material Design and Needs for n-Channel OTFTs 1455.3.1 Electronic Structure 1455.3.2 Contacts and Dielectric 1485.4 n-Channel Semiconductors for OTFTs 1515.4.1 Molecular Semiconductors 1515.4.1.1 Phthalocyanine Derivatives 1515.4.1.2 Thiophene Derivatives 1575.4.1.3 Fullerenes 1635.4.1.4 Rylene and Other Diimide Derivatives 1675.4.1.5 Other Small Molecular n-Channel Semiconductors 1795.4.2 Polymeric Semiconductors 1815.5 Conclusions and Outlook 189References 1906 Low-Voltage Electrolyte-Gated OTFTs and Their Applications 197Yu Xia and C. Daniel Frisbie6.1 Overview 1976.2 Introduction to Electrolyte-Gated Organic Transistors 1986.2.1 Structure and Operating Mechanisms 1986.2.2 The Development of Electrolyte-Gated Transistors 1996.2.3 More on the Gating Mechanism in Electrolyte-Gated Transistors 2026.2.4 Electrical Characterization of Electrolyte-Gated OTFTs 2046.2.4.1 Low-Voltage Operation 2046.2.4.2 Use of a Reference Electrode 2056.2.4.3 Determination of Accumulated Charge 2066.2.4.4 Switching Time 2096.2.5 Charge Transport at Ultrahigh Carrier Densities 2116.3 Applications of Electrolyte-Gated Organic Transistors 2136.3.1 Printable Low-Voltage Polymer Transistors and Circuits 2136.3.2 Active-Matrix Display Backplanes 2206.3.3 Organic Electrochemical Transistors as Chemical Sensors 2206.4 Conclusions and Outlook 224References225Part II Manufacturing 2357 Printing Techniques for Thin-Film Electronics 237Vivek Subramanian, Alejandro de la Fuente Vornbrock, Steve Molesa, Daniel Soltman, and Huai-Yuan Tseng7.1 The Motivation for Printing of Thin-Film Electronic Devices 2377.2 Requirements for Printing Techniques for Electronics Fabrication 2397.3 A Survey of Printing Techniques for Printed Electronics 2397.3.1 Screen Printing 2407.3.2 Gravure/Flexographic/Offset Printing 2417.3.3 Ink-jetPrinting 2457.4 Pattern Formation During Printing 2477.5 Printed Device Considerations 250References 2538 Picoliter and Subfemtoliter Ink-jet Technologies for Organic Transistors 255Tsuyoshi Sekitani and Takao Someya8.1 Introduction 2558.2 Silver Nanoparticle Ink 2578.3 Ink-jet Technologies with Pico- and Subfemtoliter Accuracies 2578.3.1 Picoliter Ink-jet Printing 2578.3.2 Subfemtoliter Ink-jet 2608.3.2.1 Ejection Mechanism 2618.3.2.2 Subfemtoliter Droplets on Organic Semiconductors 2618.4 Manufacturing Processes and Electrical Characteristics of Organic Transistors 2648.4.1 Organic Transistors with Source/Drain Electrodes Printed Using Picoliter Ink-jet 2648.4.1.1 Transistor Characteristicswith Changing Droplet Volume 2648.4.1.2 Printed Organic Transistor Active Matrix Using Picoliter Ink-jet 2688.4.1.3 A Large-Area Pressure Sensor Sheet 2698.4.2 Organic Transistors with Source/Drain Electrodes Printed Using Subfemtoliter Ink-jet 2708.4.2.1 TFTs on Polyimide Gate Dielectric 2708.4.2.2 TFTs with Self-Assembled Monolayer as a Very Thin Gate Dielectric 2728.5 Discussion and Future Prospects of Large-Area Printed Electronics 277Acknowledgments 279References 2799 Ink-jet Printing of Downscaled Organic Electronic Devices 281Mario Caironi, Enrico Gili, and Henning Sirringhaus9.1 Introduction 2819.2 Ink-Jet Printing: Technologies, Tools, and Materials 2829.2.1 Principle of Operation ofInk-Jet Printers 2829.2.2 Continuous Ink-Jet Printing Technologies 2849.2.2.1Continuous Ink-Jet Printing 2849.2.2.2 Aerosol Jet Printing 2859.2.3 DOD Ink-Jet Printing Technologies 2859.2.3.1 Thermal Ink-Jet Printing 2869.2.3.2 Piezoelectric Ink-Jet Printing 2869.2.3.3 Acoustic Ink-Jet Printing 2889.2.3.4 Electrohydrodynamic-Jet (e-Jet) Printing 2899.2.4 Conductive Inks for Ink-Jet Printing of Electrodes and Interconnections 2909.2.5 Ink-Jet Printing of Organic Electronic Devices 2939.2.5.1 Fabrication of OLEDs by Ink-Jet Printing 2949.2.5.2 Fabrication of Organic Thin Film Transistors by Ink-Jet Printing 2949.2.5.3Fabrication of Organic Photovoltaic Cells by Ink-Jet Printing 2969.2.5.4 Other Organic Devices 2979.3 High-Resolution Printing of Highly Conductive Electrodes 2979.3.1 Ink-Jet Printing of Narrow Linewidths 2989.3.2 Ink-Jet Printing Assisted by Surface-Energy Patterns 3019.3.3 Self-Aligned Printing 3029.3.4 High Yield Printing of Single-Droplet Nanoscale Electrode Arrays 3049.4 Printing of Downscaled Organic Thin Film Transistors 3089.4.1 Downscaling Requirements 3089.4.2 Gate Dielectrics for Downscaled Organic TFTs 3099.4.2.1 High-k Dielectrics 3109.4.2.2 Ultra-Thin Dielectrics 3129.4.3 Organic TFTs Printed with Subfemtoliter Printer 3149.4.4 Mask-Free, All Solution Processed SAP TFTs 3159.4.5 Self-Aligned Gate Contacts for Fast-Switching Transistors 3169.5 Conclusionsand Outlook 320Acknowledgments 321References 32110 Interplay between Processing, Structure, and Electronic Properties in Soluble Small-Molecule Organic Semiconductors 327Oana D. Jurchescu, Devin A. Mourey, Yuanyuan Li, David J. Gundlach, and Thomas N. Jackson10.1 Introduction 32710.2 Transport Limits in Crystalline Semiconductors 32810.2.1 Crystallinity - Role of Structural Order 32810.2.2 Grain Boundaries 32910.2.3 Single Crystals - Model Systems to Study Intrinsic Properties of Organic Semiconductors 33110.3 Structure-Processing-Properties Relationship in Small-Molecule Organic Thin-Film Transistors 33110.3.1 Microstructure and Mobility 33110.3.2 Controlling Film Morphology by Surface Chemical Modifications 33410.3.3 Processing Parameters Affecting Electrical Properties 33710.3.3.1 Deposition Method 33710.3.3.2 Solvent 33810.4 Advanced Film Processing 34010.4.1 How Sensibility to Processing Details Can Be Advantageous 34010.4.2 Solvent Annealing 34110.4.3 Deposition under Solvent Vapors 34210.4.4Patterning Organic Thin-Film Transistors 34410.5 Summary 348References 348Part III Applications 35311 Light-Emitting Organic Transistors 355Jana Zaumseil11.1 Introduction 35511.2 Unipolar Light-Emitting FETs 35711.3 Ambipolar Light-Emitting FETs 36011.3.1 Ambipolar Device Characteristics 36011.3.2 Ambipolar Blends with Bulk Heterojunctions 36211.3.3 Double Layers and Lateral Heterojunctions 36311.3.4 Single Semiconductor Ambipolar FETs 36511.3.4.1 Intrinsic Ambipolar Transport in Organic Semiconductors 36611.3.4.2 Ambipolar FETs with Asymmetric Electrodes 36711.3.4.3 Ambipolar FETs with Narrow Bandgap Semiconductors36811.3.4.4 Ambipolar FETs with Bottom Contact/Top Gate Electrodes 36811.3.5 Device Modeling 37511.3.6 Toward Electrically Pumped Organic Lasers 37711.4 Other Field-Effect-Based Light-Emitting Devices 38011.4.1 Vertical Light-Emitting Transistors 38011.4.2 Field-Effect Enhanced LEDs 38111.5 Conclusions 383Acknowledgments 383References 38312 Design Methodologies for Organic RFID Tags andSensor Readout on Foil 387Kris Myny, Hagen Marien, Soeren Steudel, Peter Vicca, Monique J. Beenhakkers, Nick A.J.M. van Aerle, Gerwin H. Gelinck, Jan Genoe, Wim Dehaene, Michiel Steyaert, Paul Heremans, and Eugenio Cantatore12.1 Introduction 38712.2 Organic RFID Tags 38812.2.1 Capacitively Coupled RFID Tags 38912.2.2 Inductive

  • ISBN: 978-3-527-32647-1
  • Editorial: Wiley-VCH
  • Encuadernacion: Cartoné
  • Páginas: 440
  • Fecha Publicación: 25/01/2012
  • Nº Volúmenes: 1
  • Idioma: Inglés